42,353 research outputs found

    Point-Source Power in 3 Year Wilkinson Microwave Anisotropy Probe Data

    Get PDF
    Using a set of multifrequency cross spectra computed from the 3 year WMAP sky maps, we fit for the unresolved point-source contribution. For a white-noise power spectrum, we find a Q-band amplitude of A = 0.011 ± 0.001 ÎŒK^2 sr (antenna temperature), significantly smaller than the value of 0.017 ± 0.002 ÎŒK^2 sr used to correct the spectra in the WMAP release. Modifying the point-source correction in this way largely resolves the discrepancy that Eriksen et al. found between the WMAP V- and W-band power spectra. Correcting the co-added WMAP spectrum for both the low-l power excess due to a suboptimal likelihood approximation—also reported by Eriksen et al.—and the high-l power deficit due to oversubtracted point sources—presented in this Letter—we find that the net effect in terms of cosmological parameters is an ~0.7 σ shift in n_s to larger values. For the combination of WMAP, BOOMERANG, and ACBAR data, we find ns = 0.969 ± 0.016, lowering the significance of n_s ≠ 1 from ~2.7 σ to ~2.0 σ

    Co- and counter-helicity interaction between two adjacent laboratory prominences

    Get PDF
    The interaction between two side-by-side solar prominence-like plasmas has been studied using a four-electrode magnetized plasma source that can impose a wide variety of surface boundary conditions. When the source is arranged to create two prominences with the same helicity (co-helicity), it is observed that helicity transfer from one prominence to the other causes the receiving prominence to erupt sooner and faster than the transmitting prominence. When the source is arranged to create two prominences with opposite helicity (counter-helicity), it is observed that upon merging, prominences wrap around each other to form closely spaced, writhing turns of plasma. This is followed by appearance of a distinct bright region in the middle and order of magnitude higher emission of soft x rays. The four-electrode device has also been used to change the angle of the neutral line and so form more pronounced S-shapes

    Asymmetries in the CMB anisotropy field

    Full text link
    We report on the results from two independent but complementary statistical analyses of the WMAP first-year data, based on the power spectrum and N-point correlation functions. We focus on large and intermediate scales (larger than about 3 degrees) and compare the observed data against Monte Carlo ensembles with WMAP-like properties. In both analyses, we measure the amplitudes of the large-scale fluctuations on opposing hemispheres and study the ratio of the two amplitudes. The power-spectrum analysis shows that this ratio for WMAP, as measured along the axis of maximum asymmetry, is high at the 95%-99% level (depending on the particular multipole range included). The axis of maximum asymmetry of the WMAP data is weakly dependent on the multipole range under consideration but tends to lie close to the ecliptic axis. In the N-point correlation function analysis we focus on the northern and southern hemispheres defined in ecliptic coordinates, and we find that the ratio of the large-scale fluctuation amplitudes is high at the 98%-99% level. Furthermore, the results are stable with respect to choice of Galactic cut and also with respect to frequency band. A similar asymmetry is found in the COBE-DMR map, and the axis of maximum asymmetry is close to the one found in the WMAP data.Comment: 6 pages, 5 figures; version to appear in ApJ, textual improvements, added reference

    Increasing evidence for hemispherical power asymmetry in the five-year WMAP data

    Get PDF
    (Abridged)Motivated by the recent results of Hansen et al. (2008) concerning a noticeable hemispherical power asymmetry in the WMAP data on small angular scales, we revisit the dipole modulated signal model introduced by Gordon et al. (2005). This model assumes that the true CMB signal consists of a Gaussian isotropic random field modulated by a dipole, and is characterized by an overall modulation amplitude, A, and a preferred direction, p. Previous analyses of this model has been restricted to very low resolution due to computational cost. In this paper, we double the angular resolution, and compute the full corresponding posterior distribution for the 5-year WMAP data. The results from our analysis are the following: The best-fit modulation amplitude for l <= 64 and the ILC data with the WMAP KQ85 sky cut is A=0.072 +/- 0.022, non-zero at 3.3sigma, and the preferred direction points toward Galactic coordinates (l,b) = (224 degree, -22 degree) +/- 24 degree. The corresponding results for l <~ 40 from earlier analyses was A = 0.11 +/- 0.04 and (l,b) = (225 degree,-27 degree). The statistical significance of a non-zero amplitude thus increases from 2.8sigma to 3.3sigma when increasing l_max from 40 to 64, and all results are consistent to within 1sigma. Similarly, the Bayesian log-evidence difference with respect to the isotropic model increases from Delta ln E = 1.8 to Delta ln E = 2.6, ranking as "strong evidence" on the Jeffreys' scale. The raw best-fit log-likelihood difference increases from Delta ln L = 6.1 to Delta ln L = 7.3. Similar, and often slightly stronger, results are found for other data combinations. Thus, we find that the evidence for a dipole power distribution in the WMAP data increases with l in the 5-year WMAP data set, in agreement with the reports of Hansen et al. (2008).Comment: 6 pages, 2 figures; added references and minor comments. Accepted for publication in Ap

    Constraint on the Low Energy Constants of Wilson Chiral Perturbation Theory

    Full text link
    Wilson chiral perturbation theory (WChPT) is the effective field theory describing the long- distance properties of lattice QCD with Wilson or twisted-mass fermions. We consider here WChPT for the theory with two light flavors of Wilson fermions or a single light twisted-mass fermion. Discretization errors introduce three low energy constants (LECs) into partially quenched WChPT at O(a^2), conventionally called W'_6, W'_7 and W'_8 . The phase structure of the theory at non-zero a depends on the sign of the combination 2W'_6 + W'_8, while the spectrum of the lattice Hermitian Wilson-Dirac operator depends on all three constants. It has been argued, based on the positivity of partition functions of fixed topological charge, and on the convergence of graded group integrals that arise in the epsilon-regime of ChPT, that there is a constraint on the LECs arising from the underlying lattice theory. In particular, for W'_6 = W'_7 = 0, the constraint found is W'_8 \le 0. Here we provide an alternative line of argument, based on mass inequalities for the underlying partially quenched theory. We find that W'_8 \le 0, irrespective of the values of W'_6 and W'_7. Our constraint implies that 2W'_6 > |W'_8| if the phase diagram is to be described by the first-order scenario, as recent simulations suggest is the case for some choices of action.Comment: 10 pages, no figure

    The scalar perturbation spectral index n_s: WMAP sensitivity to unresolved point sources

    Get PDF
    Precision measurement of the scalar perturbation spectral index, n_s, from the Wilkinson Microwave Anisotropy Probe temperature angular power spectrum requires the subtraction of unresolved point source power. Here we reconsider this issue. First, we note a peculiarity in the WMAP temperature likelihood's response to the source correction: Cosmological parameters do not respond to increased source errors. An alternative and more direct method for treating this error term acts more sensibly, and also shifts n_s by ~0.3 sigma closer to unity. Second, we re-examine the source fit used to correct the power spectrum. This fit depends strongly on the galactic cut and the weighting of the map, indicating that either the source population or masking procedure is not isotropic. Jackknife tests appear inconsistent, causing us to assign large uncertainties to account for possible systematics. Third, we note that the WMAP team's spectrum was computed with two different weighting schemes: uniform weights transition to inverse noise variance weights at l = 500. The fit depends on such weighting schemes, so different corrections apply to each multipole range. For the Kp2 mask used in cosmological analysis, we prefer source corrections A = 0.012 +/- 0.005 muK^2 for uniform weighting and A = 0.015 +/- 0.005 muK^2 for N_obs weighting. Correcting WMAP's spectrum correspondingly, we compute cosmological parameters with our alternative likelihood, finding n_s = 0.970 +/- 0.017 and sigma_8 = 0.778 +/- 0.045 . This n_s is only 1.8 sigma from unity, compared to the ~2.6 sigma WMAP 3-year result. Finally, an anomalous feature in the source spectrum at l<200 remains, most strongly associated with W-band.Comment: 9 pages, 10 figures, 3 tables. Submitted to Ap

    Evidence of vorticity and shear at large angular scales in the WMAP data: a violation of cosmological isotropy?

    Full text link
    Motivated by the large-scale asymmetry observed in the cosmic microwave background sky, we consider a specific class of anisotropic cosmological models -- Bianchi type VII_h -- and compare them to the WMAP first-year data on large angular scales. Remarkably, we find evidence of a correlation which is ruled out as a chance alignment at the 3sigma level. The best fit Bianchi model corresponds to x=0.55, Omega_0=0.5, a rotation axis in the direction (l,b)=(222degr,-62degr), shear (sigma/H)_0=2.4e-10 and a right--handed vorticity (omega/H)_0=6.1e-10. Correcting for this component greatly reduces the significance of the large-scale power asymmetry, resolves several anomalies detected on large angular scales (ie. the low quadrupole amplitude and quadrupole/octopole planarity and alignment), and can account for a non--Gaussian "cold spot" on the sky. Despite the apparent inconsistency with the best-fit parameters required in inflationary models to account for the acoustic peaks, we consider the results sufficiently provocative to merit further consideration.Comment: 4 pages, 3 figures; emulateapj.cls; ApJL accepted version plus fixed error in vorticity calculation (sqrt(2) off in Table 1, abstract, and conclusions); basic conclusions unchange
    • 

    corecore